博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Spring Boot实践---JVM上的实时监控类库:Metrics
阅读量:7298 次
发布时间:2019-06-30

本文共 9232 字,大约阅读时间需要 30 分钟。

hot3.png

一、使用Metrics

系统开发到一定的阶段,线上的机器越来越多,就需要一些监控了,除了服务器的监控,业务方面也需要一些监控服务。Metrics作为一款监控指标的度量类库,提供了许多工具帮助开发者来完成自定义的监控工作。

通过构建一个Spring Boot的基本应用来演示Metrics的工作方式。

在Maven的pom.xml中引入Metrics

io.dropwizard.metrics
metrics-core
${metrics.version}

目前Metrics的最新版本是3.1.2

二、Metrics的基本工具

Metrics提供了五个基本的度量类型:

  1. Gauges(度量)
  2. Counters(计数器)
  3. Histograms(直方图数据)
  4. Meters(TPS计算器)
  5. Timers(计时器)

MetricsMetricRegistry是中心容器,它是程序中所有度量的容器,所有新的度量工具都要注册到一个MetricRegistry实例中才可以使用,尽量在一个应用中保持让这个MetricRegistry实例保持单例。

2.1 MetricRegistry 容器

在代码中配置好这个MetricRegistry容器:

@Beanpublic MetricRegistry metrics() {    return new MetricRegistry();}

2.2 Meters TPS计算器

TPS计算器这个名称并不准确,Meters工具会帮助我们统计系统中某一个事件的速率。比如每秒请求数(TPS),每秒查询数(QPS)等等。这个指标能反应系统当前的处理能力,帮助我们判断资源是否已经不足。Meters本身是一个自增计数器。

通过MetricRegistry可以获得一个Meter

@Beanpublic Meter requestMeter(MetricRegistry metrics) {    return metrics.meter("request");}

在请求中调用mark()方法,来增加计数,我们可以在不同的请求中添加不同的Meter,针对自己的系统完成定制的监控需求。

@RequestMapping("/hello")@ResponseBodypublic String helloWorld() {    requestMeter.mark();    return "Hello World";}

应用运行的过程中,在console中反馈的信息:

-- Meters ----------------------------------------------------------------------request             count = 21055         mean rate = 133.35 events/second     1-minute rate = 121.66 events/second     5-minute rate = 36.99 events/second    15-minute rate = 13.33 events/second

从以上信息中可以看出Meter可以为我们提供平均速率,以及采样后的1分钟,5分钟,15分钟的速率。

2.3 Histogram 直方图数据

直方图是一种非常常见的统计图表,Metrics通过这个Histogram这个度量类型提供了一些方便实时绘制直方图的数据

和之前的Meter相同,我们可以通过MetricRegistry来获得一个Histogram

@Beanpublic Histogram responseSizes(MetricRegistry metrics) {    return metrics.histogram("response-sizes");}

在应用中,需要统计的位置调用Histogramupdate()方法。

responseSizes.update(new Random().nextInt(10));

比如我们需要统计某个方法的网络流量,通过Histogram就非常的方便。

在console中Histogram反馈的信息:

-- Histograms ------------------------------------------------------------------response-sizes             count = 21051               min = 0               max = 9              mean = 4.55            stddev = 2.88            median = 4.00              75% <= 7.00              95% <= 9.00              98% <= 9.00              99% <= 9.00            99.9% <= 9.00

Histogram为我们提供了最大值,最小值和平均值等数据,利用这些数据,我们就可以开始绘制自定义的直方图了。

2.4 Counter 计数器

Counter的本质就是一个AtomicLong实例,可以增加或者减少值,可以用它来统计队列中Job的总数。

通过MetricRegistry也可以获得一个Counter实例。

@Beanpublic Counter pendingJobs(MetricRegistry metrics) {    return metrics.counter("requestCount");}

在需要统计数据的位置调用inc()dec()方法。

// 增加计数pendingJobs.inc();// 减去计数pendingJobs.dec();

console的输出非常简单:

-- Counters --------------------------------------------------------------------requestCount             count = 21051

只是输出了当前度量的值。

2.5 Timer 计时器

Timer是一个MeterHistogram的组合。这个度量单位可以比较方便地统计请求的速率和处理时间。对于接口中调用的延迟等信息的统计就比较方便了。如果发现一个方法的RPS(请求速率)很低,而且平均的处理时间很长,那么这个方法八成出问题了。

同样,通过MetricRegistry获取一个Timer的实例:

@Beanpublic Timer responses(MetricRegistry metrics) {    return metrics.timer("executeTime");}

在需要统计信息的位置使用这样的代码:

final Timer.Context context = responses.time();try {    // handle request} finally {    context.stop();}

console中就会实时返回这个Timer的信息:

-- Timers ----------------------------------------------------------------------executeTime             count = 21061         mean rate = 133.39 calls/second     1-minute rate = 122.22 calls/second     5-minute rate = 37.11 calls/second    15-minute rate = 13.37 calls/second               min = 0.00 milliseconds               max = 0.01 milliseconds              mean = 0.00 milliseconds            stddev = 0.00 milliseconds            median = 0.00 milliseconds              75% <= 0.00 milliseconds              95% <= 0.00 milliseconds              98% <= 0.00 milliseconds              99% <= 0.00 milliseconds            99.9% <= 0.01 milliseconds

2.6 Gauges 度量

除了Metrics提供的几个度量类型,我们可以通过Gauges完成自定义的度量类型。比方说很简单的,我们想看我们缓存里面的数据大小,就可以自己定义一个Gauges

metrics.register(                MetricRegistry.name(ListManager.class, "cache", "size"),                (Gauge
) () -> cache.size() );

这样Metrics就会一直监控Cache的大小。

除此之外有时候,我们需要计算自己定义的一直单位,比如消息队列里面消费者(consumers)消费的速率生产者(producers)的生产速率的比例,这也是一个度量。

public class CompareRatio extends RatioGauge {    private final Meter consumers;    private final Meter producers;    public CacheHitRatio(Meter consumers, Meter producers) {        this.consumers = consumers;        this.producers = producers;    }    @Override    protected Ratio getRatio() {        return Ratio.of(consumers.getOneMinuteRate(),                producers.getOneMinuteRate());    }}

把这个类也注册到Metrics容器里面:

@Beanpublic CompareRatio cacheHitRatio(MetricRegistry metrics, Meter requestMeter, Meter producers) {    CompareRatio compareRatio = new CompareRatio(consumers, producers);    metrics.register("生产者消费者比率", compareRatio);    return cacheHitRatio;}

三、Reporter 报表

Metrics通过报表,将采集的数据展现到不同的位置,这里比如我们注册一个ConsoleReporterMetricRegistry中,那么console中就会打印出对应的信息。

@Beanpublic ConsoleReporter consoleReporter(MetricRegistry metrics) {    return ConsoleReporter.forRegistry(metrics)            .convertRatesTo(TimeUnit.SECONDS)            .convertDurationsTo(TimeUnit.MILLISECONDS)            .build();}

除此之外Metrics还支持JMXHTTPSlf4j等等,可以访问 来查看Metrics提供的报表,如果还是不能满足自己的业务,也可以自己继承Metrics提供的ScheduledReporter类完成自定义的报表类。

四、完整的代码

这个demo是在一个很简单的spring boot下运行的,关键的几个类完整代码如下。

配置类MetricConfig.java

package demo.metrics.config;import com.codahale.metrics.*;import org.slf4j.LoggerFactory;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;import java.util.concurrent.TimeUnit;@Configurationpublic class MetricConfig {    @Bean    public MetricRegistry metrics() {        return new MetricRegistry();    }    /**     * Reporter 数据的展现位置     *     * @param metrics     * @return     */    @Bean    public ConsoleReporter consoleReporter(MetricRegistry metrics) {        return ConsoleReporter.forRegistry(metrics)                .convertRatesTo(TimeUnit.SECONDS)                .convertDurationsTo(TimeUnit.MILLISECONDS)                .build();    }    @Bean    public Slf4jReporter slf4jReporter(MetricRegistry metrics) {        return Slf4jReporter.forRegistry(metrics)                .outputTo(LoggerFactory.getLogger("demo.metrics"))                .convertRatesTo(TimeUnit.SECONDS)                .convertDurationsTo(TimeUnit.MILLISECONDS)                .build();    }    @Bean    public JmxReporter jmxReporter(MetricRegistry metrics) {        return JmxReporter.forRegistry(metrics).build();    }    /**     * 自定义单位     *     * @param metrics     * @return     */    @Bean    public ListManager listManager(MetricRegistry metrics) {        return new ListManager(metrics);    }    /**     * TPS 计算器     *     * @param metrics     * @return     */    @Bean    public Meter requestMeter(MetricRegistry metrics) {        return metrics.meter("request");    }    /**     * 直方图     *     * @param metrics     * @return     */    @Bean    public Histogram responseSizes(MetricRegistry metrics) {        return metrics.histogram("response-sizes");    }    /**     * 计数器     *     * @param metrics     * @return     */    @Bean    public Counter pendingJobs(MetricRegistry metrics) {        return metrics.counter("requestCount");    }    /**     * 计时器     *     * @param metrics     * @return     */    @Bean    public Timer responses(MetricRegistry metrics) {        return metrics.timer("executeTime");    }}

接收请求的类MainController.java

package demo.metrics.action;import com.codahale.metrics.Counter;import com.codahale.metrics.Histogram;import com.codahale.metrics.Meter;import com.codahale.metrics.Timer;import demo.metrics.config.ListManager;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;import java.util.Random;@Controller@RequestMapping("/")public class MainController {    @Autowired    private Meter requestMeter;    @Autowired    private Histogram responseSizes;    @Autowired    private Counter pendingJobs;    @Autowired    private Timer responses;    @Autowired    private ListManager listManager;    @RequestMapping("/hello")    @ResponseBody    public String helloWorld() {        requestMeter.mark();        pendingJobs.inc();        responseSizes.update(new Random().nextInt(10));        listManager.getList().add(1);        final Timer.Context context = responses.time();        try {            return "Hello World";        } finally {            context.stop();        }    }}

项目启动类DemoApplication.java

package demo.metrics;import com.codahale.metrics.ConsoleReporter;import org.springframework.boot.SpringApplication;import org.springframework.boot.autoconfigure.SpringBootApplication;import org.springframework.context.ApplicationContext;import java.util.concurrent.TimeUnit;@SpringBootApplicationpublic class DemoApplication {    public static void main(String[] args) {        ApplicationContext ctx = SpringApplication.run(DemoApplication.class, args);        // 启动Reporter        ConsoleReporter reporter = ctx.getBean(ConsoleReporter.class);        reporter.start(1, TimeUnit.SECONDS);    }}

转载于:https://my.oschina.net/spinachgit/blog/3020874

你可能感兴趣的文章
sass--变量
查看>>
mysql查询结果添加编号
查看>>
PIE SDK矢量数据编辑事件的监听
查看>>
用python生成用户账号
查看>>
冲刺周期会议七
查看>>
$.post和jquerySubmit返回json数据获取的区别
查看>>
请求方法
查看>>
数据库基本知识(多表查询基本语法)
查看>>
Android开发者指南(23) —— Application Resources
查看>>
libevent(五)使用例子
查看>>
Python爬虫(一)爬百度贴吧
查看>>
QT学习之QString
查看>>
javascript 面向对象编程(一):封装
查看>>
vim常用指令及快捷键(持续更新)
查看>>
php hash函数
查看>>
链表的基本操作
查看>>
统计日志10分钟内出现的次数
查看>>
python开发函数进阶:内置函数
查看>>
sssssss
查看>>
责任链模式实例:扣除用户金币/写入金币明细/发送消息
查看>>